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1. Introduction 

The use of quantitative modelling to enhance understanding of the agitation-sedation (A-S) 
system and the provision of an A-S simulation platform are key tools in this area of patient 
critical care. A suite of wavelet techniques and metrics based on the discrete wavelet 
transform (DWT) are developed in this chapter which are shown to successfully establish 
the validity of deterministic agitation-sedation (A-S) models against empirical (recorded) 
dynamic A-S infusion profiles. The DWT approach is shown to provide robust performance 
metrics of A-S control and also yield excellent visual assessment tools. This approach is 
generalisable to any study which investigates the similarity or closeness of bivariate time 
series of, say, a large number of units (patients, households etc) and of disparate lengths and 
of possibly extremely long length. This work demonstrates the value of the DWT for 
assessing ICU agitation-sedation deterministic models, and suggests new wavelet based 
diagnostics by which to assess the A-S models.  
Typically agitation-sedation cycling in critically ill patients involves oscillations between 
states of agitation and over-sedation, which is detrimental to patient health, and increases 
hospital length of stay (Rudge et al., 2006a; 2006b; Chase et al., 2004; Rudge et al 2005). 
Agitation management via effective sedation management is an important and fundamental 
activity in the intensive care unit (ICU), where in the hospitalized adult agitation is defined 
as excessive verbal behaviour that interferes with patient care, and the patient’s medical 
therapies (Chase et al., 2004).   The main goal of sedation is to control agitation, while also 
preventing over-sedation and over-use of drugs. In clinical practice, however,  a lack of 
understanding of the underlying dynamics of A-S, combined with a lack of subjective 
assessment tools, makes effective and consistent clinical agitation management difficult 
(Chase et al., 2004; Rudge et al., 2005, 2006b). Early agitation management methods 
traditionally relied on subjective agitation assessment, and sedation assessment scales, 
combined with medical staff experience and intuition, to deliver appropriate sedation; and 
an appropriate sedation input response, from recorded at bedside agitation scales (Fraser & 
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Riker, 2001b; Jaarsma et al., 2001; Ramsay et al., 1974; Ricker et al., 1999; Sessler et al., 2002). 
The clinical staff at the bedside, usually nurses, then select an appropriate infusion rate 
based upon their evaluation of these scales, experience, and intuition (Kress et al., 2002). 
This approach usually leads to the administration of largely continuous infusions which 
lack a bolus-focused approach, and commonly result in either over sedation, or insufficient 
sedation (Rudge et al., 2006b). Several recent studies have emphasised the cost and 
healthcare advantages of drug delivery protocols based on assessment scales of agitation 
and sedation. A minimal differential equation (DE) model to predict or simulate the 
patients’ agitation-sedation status over time (range [3,001-25,261] time points in minutes) 
was developed and validated statistically for the first time by Chase et al. (2004). This 
process is depicted in Figure 3 (see Chase et al., 2004). The goal of the research was to create 
a physiologically representative pharmacodynamic model that captured the fundamental 
dynamics of the A-S system. The resulting model can serve as a platform to develop and test 
semi-automated sedation management controllers that offer the potential of improved 
agitation management and thus, the clinically relevant outcomes of reduced length of stay in 
the ICU and reduced health care costs as a result. A-S models were later developed by 
Rudge et al. (2005, 2006a, 2006b). All these models used either kernel regression, tracking 
indices, kernel density estimation, a probability band or time within a band as metrics of 
similarity or closeness of the patient’s simulated and recorded A-S profiles. Lee et al. (2005) 
also developed a nonparametric regression approach with an Epanechnikov kernel (Wand 
& Jones 1995) to assess the validity of the deterministic A-S models.   
The work in this chapter develops novel wavelet signatures and wavelet based statistics and 
threshold criterion (to assess closeness between pairs of time series). These are applied to the 
recorded and the simulated infusion rates obtained from the DE models of Chase et al. 
(2004) to test for commonality across patients, in terms of wavelet correlations. A major aim 
of this study is to test the feasibility of wavelet statistics to help distinguish between patients 
whose simulated profiles were “close” to their mean profile a majority of the time profile 
versus those for whom this was not the case - so-called good versus poor trackers. This 
research builds on initial work by Kang et al. (2005), which was a preliminary study to 
assess wavelet signatures for modelling ICU A-S profiles to evaluate “closeness” or 
“discrimination” of simulated versus actual A-S profiles with respect to wavelet scales. 
Another earlier application of some of our methods was the study by Kang et al. (2004) on 
historical, flowering records of 4 Eucalypt species, where it was established that wavelets 
add credibility to the use of phenological records to detect climate change (see also Hudson, 
2010, Hudson 2011, Hudson et al., 2010c and Hudson et al., 2005). This early phenological 
study was recently expanded from 4 to 8 Eucalypt species by Hudson et al. (2011a, 2011b) 
(see also Hudson et al., 2010a, 2010b and Hudson & Keatley, 2010).    

2. Brief review of wavelets and associated mathematics 

Section 2 gives a brief introduction of the basic ideas concerning wavelets. A wave is usually 
defined as an oscillating function that is localized in both time and frequency. A wavelet is a 
“small wave”, which has its energy concentrated in time to give a tool for the analysis of 
transient, nonstationary, or time-varying phenomena (Goupillaud et al., 1984; Morlet, 1983). 
Wavelets have the ability to allow simultaneous time and frequency analysis via a flexible 
mathematical foundation. Wavelets are well suited to the analysis of transient signals in 
particular. The localizing property of wavelets allows a wavelet expansion of a transient 
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component on an orthogonal basis to be modelled using a small number of wavelet 
coefficients using a low pass filter (Barber et al., 2002). This allows application to a wide 
range of fields, such as signal processing, data compression, and image analysis (Mallat, 
1998; Meyer, 2003; Kumar, 1993, 1994; Donoho, 1995; Chang et al., 2000a, 2000b). The 
wavelet decomposition of functions is analogous to Fourier decomposition methods 
(Ogden, 1997; Abramovich & Benjamini, 1995). The wavelet representation is presented first 
in terms of its simplest paradigm, the Haar wavelet (Haar, 1910). The Haar wavelet is used 
here to describe the concepts of multiresolution analysis (MRA). For more details about 
wavelets see, for example, Daubeches (1992), Chui (1992), Donoho & Johnstone (1994), 
Ogden (1997), Vidakovic (1999), Percival & Walden (2000), and Gencay et al. (2001).  

2.1 The Discrete Wavelet Transform (DWT) 

Wavelets may be formed from the mother wavelet function   t  via dyadic dilation and 

integer translation by the following, 

      
j / j

(t ) ( t - k) j ,k Z,j ,k  2
2 2  (1) 

where  is the set of all integers and the factor j / 22  maintains a constant norm 

independent of scale j. The entire set of wavelets j ,k(t )  forms an orthonormal basis 

(Daubeches, 1992). The wavelet functions j ,k are ordered according to their dilation 

index j and translation index k. Higher j corresponds to lower frequency wavelets, and 
higher k corresponds to a rightward shift. The wavelet transform is usually considered to 
be a continuous wavelet transform (CWT) (Vidakovic, 1999; Percival & Walden, 2000; 
Gencay et al., 2001) since it is applied to a function f (·) defined over the entire real axis. 
However, we only have a finite number N of sampled values, as is usually the case for 
real data applications. This approach leads to the discrete wavelet transform (DWT). To 
some degree of approximation, we can regard the DWT as being formed by taking slices 

through a corresponding CWT (McCoy et al., 1995). Any wavelet in  2
L R then can then 

be written as a set of expansion functions, 

  j / j
j ,k

j ,k

f (t ) a t - k 22 2  (2) 

where the two-dimensional set of coefficients j ,ka  is called the discrete wavelet transform of 

f (t ).  A more specific form indicating how the j ,ka ’s are calculated, can be written using 

inner products (Swelden, 1996) as follows, 

    j ,k j ,k
j ,k

f (t ) f (t ), t t  . (3) 

Let Xt be a dyadic length column vector containing a sequence X ,X , ,X1 2 N  of N=2J 

observations of a real-valued time series. The length N vector of discrete wavelet coefficients 

W is obtained via W= X, where  is an N  N orthonormal matrix defining the DWT. The 

vector of wavelet coefficients may be organised into J + 1 vectors,  
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J

T

JW W , ,W ,V  1, 2W =  (4) 

where  W j is a length N/ j2 vector of wavelet coefficients associated with changes on a scale 

of length j
j  12  and VJ is a length N/2J vector scaling coefficients associated with averages 

on a scale of length  2J = 2J . Wavelet coefficients thus tell us about variations in adjacent 

averages (Percival & Walden, 2000).  

The structure of the N  N dimensional matrix   is visualised through the submatrices 

 1, … ,  J and J (scaling coefficient matrix) via 

 
T

J J, ,..., ,   1 2     . (5) 

Let us now consider implementation of the DWT by using a pyramid algorithm (PA) 

(Mallat, 1989). Let  h = (h0, . . . , hL-1) be the vector of wavelet (high-pass) filter coefficients 

and  g = (g0, . . . , gL-1) be the vector of scaling (low-pass) filter coefficients (Daubechies, 

1992). Graphical representation of the DWT as applied to a dyadic length vector Xt is 

given by Figure 1 and Figure 2. These depict the analysis of tX  into 1, 2 and 2 using 

the pyramid algorithm (PA). The synthesis of tX  from 1, 2 and 2 use the inverse of 

the PA (Figure 2). 
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Fig. 1. Flow diagram illustrating the decomposition of Xt into first and second level wavelet 

coefficients 1,t and 2,t and their scaling coefficients 1,t and 2,t  (k=0,…,N-1). 

The Inverse DWT (IDWT) is achieved through upsampling the final level of wavelet and 

scaling coefficients, convolving them with their respective filters and adding up the two 

filtered vectors. Figure 2 gives a flow diagram for the reconstruction of tX  from the 

second level wavelet and scaling coefficient vectors. Given a dyadic length time series, it 

was not necessary to implement the DWT down to level  J log N 2 . A partial DWT 

(PDWT) may be performed instead that terminates at a level pJ J . The resulting vector 

of wavelet coefficients will then contain pJ
N N / 2  wavelets (Percival & Walden, 2000; 

Gencay et al., 2001). PDWT’s are more commonly used in practice than the full DWT 

because of the flexibility they offer in specifying a scale beyond which a wavelet analysis 
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into individual large scales is no longer of real interest. A PDWT of level J0  allows us to 

relax the restriction that N satisfy, JN  2  for some J and replace this restriction with the 

condition that N can be an integer multiple of J02 (Percival & Walden, 2000; Gencay et al., 

2001). 
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Fig. 2. Flow diagram illustrating the reconstruction of 
t

X
2 from first and second level wavelet 

coefficients 1,t and 2,t and their scaling coefficients 1,t and 2,t (k=0,…,N-1). 

2.2 The Maximal Overlap Discrete Wavelet (MODWT) 

The DWT is an alternative to the Fourier transform (FT) for time series analysis. The DWT  

provides wavelet coefficients that are local in both time and frequency. In this section the 

maximal overlap DWT (MODWT) which is a modified version of the discrete wavelet 

transform is discussed. Like the DWT, the MODWT is defined in terms of a computationally 

efficient pyramid algorithm (PA). The term MODWT comes from the relationship of the 

MODWT with estimators of the Allan variance (Allan, 1966). The MODWT gives up 

orthogonality in order to gain features the DWT does not possess. A consequence of this is 

that the wavelet and scaling coefficients must be rescaled in order to retain the variance 

preserving property of the DWT (Percival & Guttorp, 1994).  

 

Property DWT MODWT 

Data N=2J Any sample size N 

Detail and Smooth 
Coefficients of MRA 

Downsampling 
Associated with zero phase 
filters 

Circularly shifting Does not hold Holds and Invariant 

Wavelet Variance Less efficient Asymptotically Efficient 

Table 1. Properties of the DWT and MODWT 

The properties in Table 1 are important in distinguishing the MODWT from the DWT 

(Percival & Mofjeld, 1997; Percival & Walden, 2000; Gencay et al., 2001). The decomposition 

and reconstruction procedure and inverting of the MODWT is similar to the DWT. A key 

feature to an MRA using the MODWT is that the wavelet details and smooth are associated 
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with zero-phase filters.  Thus, interesting features in the wavelet details and smooth may be 

perfectly aligned with the original time series. This attribute is not available through the 

DWT since it subsamples the output of its filtering operations (Percival & Walden, 2000; 

Gencay et al., 2001). 

2.3 Wavelet-based estimators of correlation 

The length N vector of discrete wavelet coefficients W is obtained via W = X and 

J

T

JW W , ,W ,V  1, 2W = where  is an N  N orthonormal matrix defining the DWT, W j is 

a length N/ j2 vector of wavelet coefficients associated with changes on a scale of length 
j

j  12  and VJ is a length N/2J vector scaling coefficients associated with averages on a 

scale of length 2J = 2J   in Section 2.1. Due to orthonormality, X =  TW, and the squared 

wavelet coefficients of W  the norm,  
2

W , is the same as X
2

 because of the equality 

   TT T T T TX X X   2 2
W W W W W   . Then X

2
 can be decomposed on a 

scale-by-scale basis via 
J

j J
j

X V


   2 22 2

1

W W . The wavelet correlation and cross-

correlation between two time series can now be defined.  The wavelet correlation (WCORR) 

is the correlation between the scale  j  wavelet coefficients of bivariate time series. Likewise 

the wavelet covariance is the covariance between the scale  j  wavelet coefficients from 

bivariate time series. We introduce a lag , between the two series, to obtain the wavelet 

cross-covariance (WCCOVA) and wavelet cross-correlation (WCCORR) (Percival & Walden, 

2000; Gencay et al., 2001), as described below.  

Let tX and tY be two time series of interest. The wavelet cross-covariance of  t tX ,Y  for 

scale j
j  12  and lag  is defined (Percival, 1995; Percival & Guttorp, 1994; Whitcher et al., 

2000; Gencay et al., 2001) as follows, 

    X Y
j ,t j ,t,XY j Cov W ,W     (6) 

where 
X
j ,tW  and 

Y
jW  are the scale j MODWT coefficients for tX   and tY . When the width 

of wavelet or scaling filter is equal or greater than two times of the number of differencing 

operations, the MODWT coefficients have mean zero and therefore the covariance reduces 

to an expectation of a product (Percival & Walden, 2000). By setting  = 0 and Xt to Yt,  , XY j  reduces to the wavelet variance for Xt or Yt denoted by    2
X j  or   2

Y j . The 

wavelet correlation of (Xt, Yt ) at scale j=2j-1 is then defined  as follows, 

            
X Y
j ,t j ,t

XY j

XY j

X j Y j X j Y j

Cov W ,W

. .

            . (7) 
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Rationale for wavelets 
 
Wavelets allow time series data to be 
decomposed on a scale by scale basis, or to 
be discretized, into its so-called underlying 
subcomponents. 
 
Conventional time frequency domain 
methods results may be difficult to 
interpret, whereas the wavelet-correlation 
is able to display how the association 
between two time series change with 
wavelet scale. 
 
Transformation of the data (orthonormal) 
allows correlation, cross-correlational 
analyses of bivariate series to be performed 
- based on the derived wavelet coefficients. 
 
DWT is often less computer intensive than 
other transformations (e.g. fast Fourier 
transform).  
 
DWT offers easier analysis than the CWT 
as most time series are sampled as discrete 
values. DWT allows for the decorrelation 
of time series. 

Qualitative Description of the DWT and 
MODWT 
DWT transforms the original time series X 
into its DWT coefficients W = wY, where w 
is a N × N orthonormal matrix 
  
   − the components, Wj, of W are associated 
with coefficients for each scale λj = 2j−1 
 
Wavelet coefficients Wj inform on the 
variations in adjacent averages over λj. 

There are 
j

N

2
 wavelet coefficients for each 

scale λj ≡ 2j−1,  j = 1, 2 . . , J0   where  λj = 2j−1 
is a so-called standardized scale, whereas 
λjΔt is a physical scale, where Δt is the 
sampling interval.  
 
The MODWT is a non-decimated variation 
of the DWT, which defines the jth level  
MODWT detail subcomponent of the time 

series as W W
T

j, jjD   and defines the jth 

level MODWT smoothed series, 
T

j j, jS V V , 

which is related to the average (over scale 
N),  and  is normally interpretable as the 
trend. 
 

Cross- Correlation and correlation 

The scale j MODWT coefficients may be 
used to investigate the correlation and 
cross-correlation of two time series, Xt and 
Yt . 

 
The wavelet cross correlation of Xt, Yt at 

scale j=2j-1 for a time lag , is defined as 

           
Cov W W

,

W W

X Y

j, t j, t XY , j
jXY ,

X j Y j X j Y j

X Y
j, t j, te  wher  and are

              

scale λj  MODWT coefficients. Correlation 

is the cross-correlation at lag   = 0. 

MODWT-MRA 
The orthonormal matrix, N × N, leads to 
scale-based decompositions.  Given the 
MODWT coefficients, Y can be constructed 
as an additive decomposition, known as a 
multiresolution analysis (MRA). 
 
Specifically the level J0 MODWT-based 

MRA is given by  
J

j j j

j

Y d s ,  d


 0

0

1

 are the 

“detail series”, ( j= 1, 2,  . . ., J0 )  
 
for a pre- specified J0, and are part of the 
MRA of Y that can be attributed to 
variations on a scale of λj. . 
 

Table 2. Summary of the wavelet mathematics and rationale.  
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where    X
j ,tX j var W  2  is the wavelet variance with scale  j .  

X
j ,tW and 

Y
j ,tW are the 

scale  j  MODWT coefficients for  Xt  and Yt , respectively (Percival & Walden, 2000; Gencay 

et al., 2001). As with the usual correlation coefficient (between two random variables), the 

range of   XY j is the interval –1 to 1 for all j. The typical cross-correlation statistic is 

purely a function of the cross-covariance and standard deviations. Thereby the MODWT 
estimator of the wavelet cross-correlation (WCCORR) of the two processes, which are at 

variance by an integer lag , is defined as 

            
X Y
j ,t j ,t

XY , j

XY , j

X j Y j X j Y j

Cov W ,W

. .

            . (8) 

As the usual cross-correlation is used to determine lead or lag relationships between two 

series, the wavelet cross-correlation provides a lead or lag relationship between Xt and Yt on 

a scale-by-scale basis. In terms of confidence intervals (CIs) for the WCORR and WCCORR 

parameters, a nonlinear transformation is required to produce reasonable CIs for the 

correlation coefficient (Gencay et al., 2001). We use the Fisher’s z-transformation (Dépué 

2003) which is defined as follows, 

    h log tanh
      

11 1

2 1
. (9) 

An unbiased estimator of the WCORR based on the MODWT in Equation (7) is  . The given 

estimated correlation coefficient  , based on N independent Gaussian observations, has the 

following limiting distribution (Percival & Walden, 2000; Gencay et al., 2001). 

       N h h ~ N ,    3 0 1 . (10) 

Applying the transformation tanh maps the confidence interval back to [−1, 1] to produce an 

approximate 95% CI for  as follows (Whitcher et al. 2000; Gencay et al. 2001; Hudson et al., 

2010b)  

   /

XY j
j

tanh h
N̂

               

1 2

2

1

3
 . (11) 

The quantity jN̂  in Equation (11) is the number of the DWT coefficients associated with 

scale j . Table 2 gives a brief overview of the wavelet mathematics used in this chapter.   

3. Application to Agitation Sedation (A-S) wavelet modelling 

This section presents the application of a wavelets analysis of the agitation-sedation (A-S) 
data of 37 ICU patients’ bivariate time series, sourced from the research of Chase et al. 
(2004). An extensive description of A-S modelling, as well as other references on A-S control; 
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along with details of the development and validation of the A-S model are given in Chase et 
al. (2004). The model by Chase et al. (2004) serves as a platform to develop and test semi-
automated sedation management controllers that offer the potential of improved agitation 
management and reduced length of stay in the ICU. Figure 3 presents a diagram of the 
feedback loop employing nursing staff feedback of subjectively assessed patient agitation 
through the infusion controller (Chase et al., 2004). We refer the reader also to the later 
works of Lee et al.  (2005) and of Rudge et  al. (2005, 2006a, 2006b) who developed further A-
S models and metrics. Table 3 summarises the equations used, mathematical methods 
employed and the aims of the given study, along with the performance indicators derived 
for each of Chase et al. (2004), Rudge et al. (2006a, 2006b, 2005), and Lee et al. (2005). As such 
Table 3 and subsequently Table 8 show how the research presented in this chapter adds 
knowledge and insight into A-S modelling in the context of these earlier works. 

3.1 Using the DWT and MODWT 

The DWT, the maximal overlap (MODWT) and multiresolution analysis (MRA) were 
applied to all pairs of patient specific infusion profiles (recorded (R) and simulated (S)) for 
the 37 ICU patients. The aim of the analysis reported in section 3.1 – 3.3 is to investigate 
 

 
 

Fig. 3. Diagram of the feedback loop employing nursing staff feedback of subjectively 
assessed patient agitation through the infusion controller (diagram is sourced from Chase et  
al. (2004)).  
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whether wavelets based diagnostics can reliably assess how well the A-S model (simulation) 
captures the underlying dynamics of the  true  recorded infusion rates at  different horizons 
via the DWT; and to compare these results with the diagnostics of Chase et al. (2004), Rudge 
et al. (2006a, 2006b, 2005) and Lee et al. (2005).  For illustration of these concepts patient 
specific  recorded (R) and simulated ( S) profiles (as the thick line, according to the equation 
of Chase et al. (2004)) are shown in Figure 4. It is noteworthy that simulation of the A-S 
states using the model of Rudge et al. (2005) showed that a reduction in both the magnitude 
of agitation and the severity of agitation sedation cycling is possible. Mean and peak 
agitation levels were reduced by 68.4% and 52.9%, respectively, on average, with some 
patients exhibiting in excess of a 90% reduction in mean agitation level through increased 
control gains. Implementation of automated feedback infusion controllers based on such 
models could thus offer simple and effective drug delivery, without significant increases in 
drug consumption and expenses.  
The lag/lead relationship between the S and R infusion series was investigated on a scale-
by-scale basis via a MODWT-MRA (using the LaDaub (8) filter); thereby each patient’s S 
and R series can be expressed as a new set of series, called details and smooth. Each of these 
series are associated with variations at a particular wavelet scale. The results of a MODWT-
MRA (not detailed here due to space restrictions) reveal that thirteen patients (patients 3, 9, 
11, 17, 20, 22, 26, 30, 33, 34, 35, 36, 37) (Figure 4) have recorded infusion series that lead their 
corresponding simulated infusion series. It is noteworthy that of these 13 patients, which 
exhibit such a lagged dependency, our DWT wavelet diagnostics (and those of Chase et al., 
(2004) and Rudge et al., (2006b)) identify the following as poor performers in common 
(Patients 9, 11, 17, 22, 33, 34 and 35).  Overall it is thought that the simulated profile peaks 
later than the patient’s recorded infusion possibly due to the delay in distribution time for 
the drug. This result implies that, while performing well most of the time, the simulated rate 
is lagging behind the patient’s true infusion rate. These periods indicate times of the 
patient’s hospital length of stay in ICU, where the DE model may not capture the subject’s 
specific A-S dynamics (evidenced by the time lags). These periods may correspond to 
periods of marked distress or physiological alterations due to the patient’s state. A common 
reason for the departure of the simulated profile is this apparent time-lag. Particularly small 
departures indicate rapid increases (or decreases) in the recorded infusion rate, where the 
simulated infusion rate appears to lag behind. These differences may be a result of the 
medical staff’s over or under-assessment of the patient’s agitation status, this hypothesis is 
as yet not proven.  

3.2 Wavelet correlation and other diagnostics 

In section 3.2 an estimate of wavelet correlation (WCORR),  from Equation (7), is derived 

per patient. This WCORR between the scale j wavelet coefficients of each patient’s bivariate 
(S, R) time series is used to assess how the simulated (S) and recorded (R) infusion series 
correlate. Graphical assessment tools and derived wavelet-based metrics are then suggested 
and proven valid for ICU A-S management. The wavelets based performance indices 
developed in this chapter pertain to the modulus of the wavelet correlation at wavelet scale 

(j) (level 1) and also to summary statistics founded on measures of the wavelet correlations 
and wavelet cross-correlations over scales, as defined  below (Table 6).  For the ith patient 
(i=1, 2, …, 37) count the number of its wavelet scales (out of a maximum of 8) for which the 

WCORR value at scale j  is not significant (at the 5% level of significance). This variable is 
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denoted by “Count of NS” and given per patient, with specification of the significance (at 

the 5% level of significance) of WCORR at j  (j=1, 2, …, 8) as either significant (S) or not 

significant (NS) in Table 4. Patient specific AND (average normalized density), RAND 
(relative average normalized density), and TI (tracking index) values, all derived by Rudge 
et al (2006b) and Chase et al. (2004), are also shown in Table 4. Definitions for the AND, 
RAND and TI performance indicators or diagnostics are detailed in Table 3. 
 

 

Fig. 4. Example of the delay between the recorded and simulated (thick line) infusion 
profiles for Patients 8, 9, 34 and 35 (denoted by P8, P9, P34 and P35). P8 is shown to be a 
good tracker, the remainder are poor trackers, according to the indices developed in this 
chapter. 
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 (2006 a, b) 
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Kernel smoothing 
Chebychev’s 
inequality for 
probability band 
(Chase et al., 
2004) 
 
Relative average 
normalised 
density (RAND) 
 
 
 
Average 
normalised 
density (AND) 

Develop a physiologically representative model 
that incorporates endogenous agitation 
reduction (EAR). 

 
Use performance measures as follows: 

 
1. RTD: relative total dose (RTD) expresses 

the total dose administered in the 
simulation as a percentage of the actual 
total recorded dose. 

2. Relative average normalised density 
(RAND) measures how probabilistically 
similar the model outputs are to the 
smoothed data, and hence the degree of 
comparability between the model and the 
empirical data. 

3. Percentage time in band (TIB).  
 

Exact patient identifiers of those 
who exhibit poor fit are  
not specified in Rudge et al. 
(2006b), but of 10 poorly 
modelled patients, 5 have  
RAND values from 0.45 to 0.5, 
and the remaining 5 have RAND 
values less than 0.45. These 
patients with poor fit are P7, P10, 
P11, P13, P22, P27, P28, P29, P32 
and P35  
 
 
 
The remaining 27 patients all 
have RAND values greater than 
0.50.  
 

 
Rudge et al. 
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Infinite Impluse 
Response (IIR) 
filter (Rorabaugh, 
1998) 
 
Proportional-
Derivative (PD) 
control with 
agitation for 
infusion rate (U) 
 
Moving blocks 
bootstrap (Efron 
& Tibshirani, 
1993) 
 
Tracking Index 
(TI) 

 
Develop a control model to capture the essential 
dynamics of the agitation-sedation system. 

 
Use performance measures as follows: 

 
1. = +p dU K A K A  for the infusion rate. 

2. Tracking Index (TI): A quantitative parameter 
to indicate how well the simulated 
infusion profile represents the average 
recorded infusion. 
 

         

 
Exact patients who exhibit poor 
fit are not specified in Rudge et 
al. (2005). 
 
8 patients have simulated 
infusion profiles that lie within 
the probability band less than 
70% of the time.  
 
The median patient TI across all 
patients is 87.0 with a 95% CI of 
(85.9, 88.1).  
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Authors Equations or Model used  
Mathematical 
methods used 

Aims of the study and the performance 
indicators  derived 

Patient numbers with poor 
fit to simulated profiles 
(poor trackers) and their 
summary profile  

Lee et al. 
(2005) 
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Kernel 
regression 
(Wand & Jones, 
1995) 
 
Kernel density 
estimation: 
marginal density 
function of the 
regression 
function 
estimate 
 
Nonparametric 
regression  
 
Chebychev’s 
inequality for the 
probability band 
(Chase et al., 
2004) 
 

Develop a nonparametric approach for 
assessing the validity of deterministic 
dynamic models against empirical data. 
 
Use performance measures as follows: 
1. Kernel regression and kernel density 

estimation to yield visual graphical 
assessment of the data. 

2. Construct a probability band for the 
nonparametric regression curve and 
check whether the proposed model lies 
within the band, for a significant 
proportion of the time. 

3. Average normalised density (AND) to 
measure how well the simulated values 
coincide with the maximum density at 
every time point and the relative 
average normalised density (RAND). 

Exact patients who exhibit   
poor fit are  not specified in  
Lee et al. (2005), however of  
the 37 patients, 27 have 
RAND  
values greater than 0.5.  
 
Of the remaining 10 patients,  
7 have RAND values from 
0.43  
to 0.49, and 3 have low RAND  
values between 0.34-0.38. 

 
Chase et al. 
(2004)  
 
 
 
 

 
The agitation-sedation system model: 
Phamarcokinetic model (Wood & Wood, 1990) adding patient 
agitation as a third state variable 
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Uniform kernel with bandwidwidth h (Wand & Jones, 1995) 
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Infinite Impluse 
Response (IIR) 
filter 
(Rorabaugh, 
1998) 
 
Proportional-
Derivative (PD) 
control with 
agitation for 
infusion rate (U) 
 
Tracking Index 
(TI) 
 
Chebychev’s 
inequality for the 
probability band 
(Chase et al., 
2004) 

 
Develop a mathematical model to capture the 
essential dynamics of the agitation-sedation 
system and develop statistical validity tests 
using the recorded infusion data for 37 ICU 
patients. 
Use performance measures as follows 
1. Kernel smoothing using the uniform 

kernel.  
2. Tracking Index (TI). 
3. Moving blocks bootstrap to gain an 

understanding of the reliability TI for a 
given patient’s infusion profile 

4. 90% Probability Band, by definition the 
range within at least 90% of the time, 
the estimated mean value of the 
recorded infusion rate lies within the 
band.  

 
P6, P7, P9, P12, P17, P21, P27, 
P34 
are the 8 patients which have 
a TI values less than 70%, i.e. 
do not have infusion profiles 
which lie within the 
probability band at least 70% 
of the time. 
 
 
The remaining 29 patients 
have TI 
values greater than 70%. 
 
 

From Lee et al (2005) and Chase et al (2004): “Po and Ps are the concentrations of morphine and midazolam, respectively (mgmL−1), where 
terms with superscript ‘o’ relate to the opioid morphine, and terms with superscript ‘s’ relate to the sedative midazolam. Time is represented 
by t (min), the variable of integration, and the terms w1 and w2 are the relative weights of stimulus and cumulative effect, representing the 
patient sensitivity. Finally, Ecomb is the combined pharmacodynamic effect of the individual effect site drug concentrations of morphine and 
midazolam determined using response surface modeling as defined in Minto et al. (Minto et al., 2000).” 
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Poor trackers are identified via wavelet diagnostics as follows: Patients with a “Count of 

NS” greater or equal to 2 and a non-significant WCORR value at scale 1  (level 1) are said 

to be a poor tracker; as are patients with a “Count of NS” less or equal to 3 and a significant 

negative WCORR value at scale 1 (level 1) and a significant negative WCORR value at 

scale 6 . Table 4 indicates 15 such  poor trackers (given in bold),  as defined by the wavelet 

based diagnostics (“Count of NS” and WCORR at scales  and 6 ) derived in this chapter. 

Poor tracking implies that the patient’s simulated A-S profiles do not mirror their actual 
(recorded) infusion profile over time (according to their profile of wavelet correlations).  
Note that the threshold values delineating poor tracking for AND and RAND (according to 
Rudge et al. (2006b)) are not taken into account in classifying a patient as either a poor or 
good tracker (Table 4). In this chapter our criterion for tracking classification is based solely 

on the patient’s WCORR values at scales j (j=1, 2, …, 8), their significance or otherwise, 

and  on  their “Count of NS”  wavelet  correlations (Table 4). As mentioned above Table 4 
also indicates patients which are considered to track poorly according to both Rudge et al’s 
(2006b) and Chase et al.’s (2004) diagnostics, the latter are based on completely different 
mathematical methodologies as summarised in Table 3. It is noteworthy that 11 of our 15 
wavelet  based poor trackers are also considered to be poor trackers by either or both of 
Rudge et al.’s (2006b) and Chase et al.’s (2004) performance indices. 

Figure 5 shows the estimated WCORR,   and 95% CI for four patients, P2 and P4 (are poor 

trackers) and P8 and P14 (are good trackers). From Figure 5 WCORR is generally significant 

for wavelet levels 1, 2, 4, 8 and 16 for the good trackers (whether they are a positive or 

negative WCORR value). This is not the case for the poor trackers, who generally exhibit a 

non-significant WCORR at j  for j < 5. Figures 6 and 7 display each patient’s multivariate 

profile of AND, RAND and “Count of NS” (divided by 10 for axis scaling purposes), for 

increasing 1 ,for the poor trackers and  good trackers, respectively. Figures 6-7 clearly 

show that the profile of (“Count of NS”/10) is invariably higher for the poor trackers; and 

RAND, AND and 1  profiles are invariably higher for the good trackers.  

By using the data per patient (from Table 4), we can perform a Kruskal Wallis test to 
statistically compare the medians of the performance indicators between the wavelet based 
good and poor trackers. These results are summarized in Table 5 and Table 6.  Specifically 
Table 6 gives the results of the Kruskal Wallis (k-w) tests for our wavelet based poor versus  

good  tracker  groups for measures of WCORR at scale j (j=1, 2, …, 8), “Count of NS”, 1 , 

in addition to AND, RAND and TI per patient.  From Table 6 we observe that the median 
wavelet correlations for the first 5 wavelet scales are significantly lower for the poor trackers 

(15 of 37 patients), as are the median absolute value of the wavelet correlation at 1 , and of 

AND, RAND and TI (P < 0.006). The median of the number of non significant wavelet 

correlations (“Count of NS”) (an integer out of 8, at j , j=1, 2,…, 8) is 5.0 for the poor 

trackers, significantly higher than the median of 2.0 for the good tracking group (P = 0.001) 
(Table 6). It is noteworthy also that the patient specific WCORR profiles are good visual 
“signatures” of the patient’s tracking status (good or poor tracking) (see Figure 5).   
Recall that 11 of the 15 DWT based poor trackers are also considered to be poor trackers by 
either or both Rudge et al.’s (2006b) and Chase et al.’s (2004) (non wavelet based) 
performance indicators. Indeed kappa tests of agreement show that our DWT WCORR 
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criterion for poor tracking, as developed in this chapter, agrees significantly with that of the 
performance thresholds of Chase et al (2004) (kappa = 0.2127, P=0.01) and with that of Rudge 
et al. (2006b)  (kappa = 0.5856, P=0.001). It is noteworthy also that the threshold criterion for 
poor tracking for RAND by both Rudge et al.’s (2006b) and Chase et al.’s (2004) performance 
indicators is corroborated by our poor trackers, identified by the wavelet metrics derived in 
this chapter, shown to have a median RAND of 0.50 (Table 6), which is exactly the threshold 
used by Rudge et al. (2006b) and Chase et al. (2004).  
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Fig. 5. Wavelet correlation for Patient 2 (Top LHS), Patient 4 (Top RHS), Patient 8 (bottom 
LHS) and Patient 14 (bottom RHS) with the approximate 95% confidence interval. Patients 2 
and 4 are poor trackers in contrast to Patients 8 and 14 who are good trackers with >4 
significant WCORR at wavelet scales (1, 2, 4, 8, 16). 
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Fig. 6. A comparison of RAND (green square), AND (burgundy triangle), the number of 

non-significant j (divided by 10) (pink square), and the modulus of 1 (blue diamond) for 

the poor trackers (P11, P2,…, P29) sorted by increasing 1 . 

 

 

Fig. 7. A comparison of RAND (green square), AND (burgundy triangle), the number of 

non- significant j (divided by 10) (pink square ), and the modulus of 1 (blue diamond) for 

the good trackers (P31, P30,..., P3) sorted by increasing 1 . 
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Patient 
ID 

Wavelet scale j (j= 1, 2, …, 8) 
Count 
of NS* 

Rudge et al. 
(2006b) 

diagnostics 

Chase et 
al. (2004) 

diagnostics 

1 2 4 8 16 32 64 128 AND RAND TI (SE)  

P1 S S S S S NS NS S 2 0.51 0.62 87.0 (0.041) 

P2 NS NS NS NS NS NS NS S 7 0.53 0.66 86.2 (0.037) 

P3 S S S S S S N.S S 1 0.70 0.83 88.8 (0.015) 

P4 NS NS NS NS NS NS NS S 7 0.56 0.62 80.1 (0.095) 

P5 S S NS NS NS NS NS S 5 0.60 0.80 91.1 (0.016) 

P6 S S S S S NS NS S 2 0.70 0.84 87.0 (0.014) 

P7 S S NS NS NS NS NS S 5 0.33 0.43 84.5 (0.068) 

P8 S S S S S NS NS S 2 0.45 0.59 87.4 (0.027) 

P9 NS NS NS NS NS NS NS S 7 0.49 0.62 87.3 (0.024) 

P10 S S S NS NS S NS S 3 0.27 0.34 83.4 (0.041) 

P11 NS NS NS NS NS NS NS S 7 0.31 0.38 83.7 (0.080) 

P12 S S S S S S NS S 1 0.61 0.77 84.1 (0.033) 

P13 S S S S S NS NS S 2 0.37 0.45 86.1 (0.072) 

P14 S S S NS S NS NS S 3 0.48 0.56 93.1 (0.034) 

P15 S S S NS NS NS NS S 4 0.45 0.60 91.1 (0.011) 

P16 S S S S S NS NS S 2 0.44 0.57 87.9 (0.021) 

P17 S S S S S NS NS S 2 0.61 0.72 84.0 (0.037) 

P18 S S S S NS S NS S 2 0.55 0.68 94.6 (0.026) 

P19 S S S S S NS NS S 2 0.50 0.66 91.1 (0.014) 

P20 S S S NS NS NS NS S 4 0.53 0.65 87.3 (0.033) 

P21 NS NS NS NS NS NS NS S 7 0.53 0.72 78.5 (0.095) 

P22 S S NS NS NS NS NS S 5 0.35 0.45 85.2 (0.043) 

P23 S S S S NS NS NS S 3 0.72 0.85 84.8 (0.105) 

P24 S S S S S NS NS S 2 0.43 0.54 88.1 (0.023) 

P25 S S S S S NS NS S 2 0.50 0.66 92.4 (0.025) 

P26 S S S NS NS NS NS S 4 0.68 0.88 87.4 (0.031) 

P27 S S S S NS S S S 1 0.39 0.49 74.9 (0.074) 
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Patient 
ID 

Wavelet scale j (j= 1, 2, …, 8) 
Count 
of NS* 

Rudge et al. 
(2006b) 

diagnostics 

Chase et 
al. (2004) 

diagnostics 

1 2 4 8 16 32 64 128 AND RAND TI (SE)  

P28 S S S S NS S NS S 2 0.34 0.44 89.2 (0.027) 

P29 S S S S S S NS S 1 0.38 0.45 77.6 (0.083) 

P30 NS NS NS NS NS NS S S 6 0.63 0.82 92.2 (0.021) 

P31 S S NS NS NS NS NS S 5 0.40 0.51 89.3 (0.030) 

P32 S S NS NS NS S NS S 4 0.38 0.50 89.3 (0.022) 

P33 S S S NS NS S NS S 3 0.28 0.36 88.7 (0.020) 

P34 NS NS NS NS NS S NS S 6 0.43 0.55 86.5 (0.034) 

P35 S S S S S S NS S 1 0.38 0.46 85.9 (0.044) 

P36 S S NS NS NS NS NS S 5 0.52 0.64 86.4 (0.095) 

P37 S S S S S NS NS S 2 0.53 0.59 79.9 (0.093) 

Table 4. Wavelet correlation analysis of the 37 ICU patients. S-significant, NS-non-significant 
WCORR at given scale j (j= 1, 2, …, 8). Bolded patients indicate poor trackers according to 

the WCORR and “Count NS” values. Patient 30 has NS=6, which is large, but their high 
AND=0.63, RAND=0.82, and TI=92.2% are indicative of good tracking. 

 

Poor 
Patient ID 

Wavelet Correlations (scale j ) 
Rudge et al. 

(2006b) 
diagnostics 

Chase et al. 
(2004) 

diagnostics 

        AND RAND TI(SE) 

P2 0.005 0.005 0.005 0.005 -0.008 -0.186 -0.034 0.649 0.53 0.66 86.2 (0.03) 

P4 0.006 0.006 0.005 0.005 0.036 -0.077 0.023 0.724 0.56 0.62 80.1 (0.09) 

P7 -0.081 -0.081 -0.081 -0.081 -0.037 -0.066 0.034 0.785 0.33 0.43 84.5 (0.06) 

P9 -0.020 -0.021 -0.021 -0.021 0.012 -0.066 0.012 0.793 0.49 0.62 87.3 (0.02) 

P10 0.051 0.051 0.051 0.051 0.052 -0.125 -0.040 0.591 0.27 0.34 83.4 (0.04) 

P11 -0.001 -0.001 -0.001 -0.001 0.019 0.093 0.002 0.654 0.31 0.38 83.7 (0.08) 

P21 0.016 0.017 0.017 0.017 0.026 -0.148 -0.031 0.779 0.53 0.72 78.5 (0.09) 

P22 -0.051 -0.051 -0.051 -0.051 -0.027 -0.115 -0.052 0.739 0.35 0.45 85.2 (0.04) 

P27 -0.108 -0.108 -0.108 -0.108 -0.088 -0.227 -0.201 0.660 0.39 0.49 74.9 (0.07) 

P28 -0.100 -0.101 -0.101 -0.101 -0.090 -0.200 -0.157 0.628 0.34 0.44 89.2 (0.02) 

P29 -0.616 -0.616 -0.616 -0.616 -0.582 -0.497 -0.294 0.627 0.38 0.45 77.6 (0.08) 

P32 0.032 0.034 0.035 0.035 0.042 -0.139 -0.061 0.732 0.38 0.50 89.3 (0.02) 

P33 0.046 0.046 0.046 0.046 0.049 -0.127 -0.012 0.691 0.28 0.36 88.7 (0.02) 

P34 -0.019 -0.019 -0.019 -0.019 -0.029 -0.213 -0.131 0.676 0.43 0.55 86.5 (0.03) 

P35 -0.172 -0.172 -0.172 -0.172 -0.139 -0.155 -0.166 0.576 0.38 0.46 85.9 (0.04) 
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Poor 
Patient ID 

Wavelet Correlations (scale j ) 
Rudge et al. 

(2006b) 
diagnostics 

Chase et al. 
(2004) 

diagnostics 

        AND RAND TI(SE) 

Poor 
Median 

-0.019 -0.019 -0.019 -0.019 -0.008 -0.139 0.040 0.676 0.390 0.500 85.2 

(95%CI) 
(-0.092
,0.013)

(-0.094,
0.013)

(-0.094,
0.013)

(-094,
0.013)

(-0.069,
0.032)

(-0.195,
-0.091)

(-0.147,
-0.003)

(0.636,
0.736)

(0.343,
0.515)

(0.444, 
0.620) 

(81.333,  
87.001) 

Good Pt ID            

         AND RAND TI(SE) 

P1 -0.112 -0.134 -0.134 -0.134 -0.107 -0.101 -0.115 0.662 0.51 0.62 87.0 (0.04) 

P3 -0.503 -0.504 -0.504 -0.504 -0.439 -0.221 -0.242 0.675 0.70 0.83 88.8 (0.02) 

P5 0.074 0.073 0.073 0.073 0.078 -0.118 -0.004 0.707 0.60 0.80 91.1 (0.02) 

P6 -0.202 -0.202 -0.202 -0.202 -0.155 -0.090 -0.167 0.666 0.70 0.84 87.0 (0.01) 

P8 0.208 0.206 0.206 0.206 0.211 -0.029 0.081 0.783 0.45 0.59 87.4 (0.03) 

P12 -0.359 -0.359 -0.359 -0.359 -0.316 -0.264 -0.179 0.645 0.61 0.77 84.1 (0.03) 

P13 0.258 0.258 0.258 0.258 0.257 0.007 0.107 0.768 0.37 0.45 86.1 (0.07) 

P14 -0.378 -0.379 -0.380 -0.380 -0.301 -0.074 -0.003 0.785 0.48 0.56 93.1 (0.03) 

P15 0.086 0.092 0.093 0.093 0.084 -0.149 -0.039 -0.697 0.45 0.60 91.1 (0.01) 

P16 0.168 0.169 0.169 0.169 0.173 -0.067 0.035 0.758 0.44 0.57 87.9 (0.02) 

P17 -0.122 -0.122 -0.122 -0.122 -0.069 0.131 -0.161 0.604 0.61 0.72 84.0 (0.04) 

P18 -0.134 -0.134 -0.134 -0.134 -0.130 -0.243 -0.211 0.628 0.55 0.68 94.6 (0.03) 

P19 0.272 0.273 0.273 0.273 0.277 0.066 0.195 0.726 0.50 0.66 91.1 (0.01) 

P20 0.057 0.057 0.057 0.057 0.057 -0.106 -0.051 0.613 0.53 0.65 87.3 (0.03) 

P23 0.149 0.149 0.149 0.149 0.164 -0.019 0.099 0.729 0.72 0.85 84.8 (0.11) 

P24 0.231 0.232 0.232 0.232 0.232 -0.007 0.157 0.793 0.43 0.54 88.1 (0.02) 

P25 -0.211 -0.214 -0.214 -0.214 -0.188 -0.218 -0.185 0.561 0.50 0.66 92.4 (0.03) 

P26 -0.122 -0.123 -0.123 -0.123 -0.073 0.057 -0.011 0.579 0.68 0.88 87.4 (0.03) 

P30 -0.045 -0.044 -0.044 -0.044 -0.049 -0.208 -0.150 0.647 0.63 0.82 92.2 (0.02) 

P31 0.040 0.040 0.040 0.040 0.047 -0.108 0.024 0.701 0.40 0.51 89.3 (0.03) 

P36 0.081 0.081 0.081 0.081 0.055 -0.172 -0.104 0.677 0.52 0.64 86.4 (0.10) 

P37 0.272 0.273 0.273 0.273 0.273 0.066 0.195 0.726 0.53 0.59 79.9 (0.09) 

Good 
Median 

0.049 0.049 0.0485 0.0485 0.051 -0.096 -0.025 0.676 0.525 0.655 87.7 

(95%CI) 
(-0.122,
0.149)

(-0.134,
0.149)

(-0.134,
0.149)

(-0.134,
0.149)

(-0.108,
0.164)

(-0.149,
-0.019)

(0.015,
0.036)

(0.065,
-0.726)

(0.479,  
0.610)

(0.590,  
0.771) 

(86.984, 
91.100) 

Kruskal 
Wallis 
P value 
(Poor vs 
Good) 

P=0.32 0.32 0.32 0.32 0.30 0.16 0.40 0.84 0.004 0.003 0.005 

Table 5. Kruskal Wallis test on the wavelet correlation, and on Rudge et al.’s (2006b) and 
Chase et al.’s (2004) diagnostics – testing for differences between  the DWT based poor 
versus good tracker groups. 
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Variable 
Poor group 

median 
Good group 

median 
k-w#: P value 

Modulus WCORR at 1 0.046 0.159 0.001 

“Count of NS” 5 2 0.001 

AND 0.39 0.53 0.004 

RAND 0.50 0.66 0.003 

TI 85.20 87.7 0.005 

Table 6. K-W tests of all wavelet and other diagnostics by wavelet based tracking group. 

3.3 Using the Wavelet Cross-Correlation (WCCORR) 

We can investigate possible lead or lag relationships between a given patient’s modelled 
(simulated) versus observed (recorded) A-S profile by examining a plot of its MODWT 
based wavelet cross-correlation (WCCORR), according to Equation (8). Figure 8 shows this 
WCCORR plot for Patient 3 (P3: a good tracker) and Patient 4 (P4: a poor tracker). For 

Patient 3 the   values are negative and statistically significant  for all scales  except 8 (Table  

7), and  there is also a large positive peak at a lag of 120 minutes for the first six wavelet 

scales j (j=1, 2, …, 6) (Figure 8). At scale 7 ; a large positive peak occurs at 112 minutes for 

Patient 3; and at scale 8  at a lag of 33 minutes. We conclude that at scale 7  there is a 

period of 170 minutes (see Figure 15) for Patient 3. Likewise an examination of Figure 8 
shows an inverse shaped profile of peaks to troughs for Patient 4 (a poor tracker), with 

generally non-significant positive  values compared to Patient 3 (see also Table 7). It is 

noteworthy from Figure 8 that generally patients who are good trackers show a common 
type of WCCORR signature or pattern, with WCCORR being significant at zero lag (for all 
scales) and their 95% CI do not include zero  (see Table 7), not  so  for the poor  trackers. 
 

 
 

Patient 3 (good tracker) 

Scale Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 

L. CI -0.528 -0.539 -0.554 -0.573 -0.544 -0.398 -0.485 0.382   -0.503+ -0.504+ -0.504+ -0.504+ -0.439+ -0.221+ -0.242+ 0.675+ 

U. CI++ -0.477 -0.467 -0.451 -0.428 -0.321 -0.027 0.036 0.845 

 
 

Patient 4 (poor tracker) 

Scale Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 

L. CI -0.034 -0.050 -0.074 -0.107 -0.123 -0.297 -0.299 0.401   0.006 0.006 0.005 0.006 0.036 -0.077 0.023 0.724 

U. CI++ 0.045 0.061 0.085 0.117 0.194 0.151 0.339 0.886 

Table 7. The signature of WCORR for the Patient 3 and Patient 4 at zero lag based 

WCCORR.  The positive subscript (+)  indicates significant WCCORR   values. 

www.intechopen.com



 
Wavelet Signatures and Diagnostics for the Assessment of ICU Agitation-Sedation Protocols 

 

341 

Recall that Table 7 gives the values (signature over wavelet scales) of   and their associated 

95% confidence limits (L.CI, U.CI) for Patient 3 and Patient 4 who are deemed, to be a good 
and poor tracker, respectively (as depicted by Figure 8). The main results of the work in this 
chapter are summarised in Table 8 and discussed in detail in the Conclusion (section 4).  
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Fig. 8. MODWT estimated wavelet Cross-Correlation between the simulated and recorded 

infusion series for lags up to 144 minutes for Patient 3 (a good tracker) and Patient 4 (a 
poor tracker) with approximate 95% CI (red broken lines). 
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 (poor trackers) and the summary  
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versus good fit 

 
Kang et al. 
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chapter) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
See the schema of  our  approach of Chapter 2 below: 
 

DWT Procedure (second stage) 
 

 
 

 
DWT analysis and synthesis equations 
 

X= [X1, X2,…, XN], N=2J , DWT analysis equation W= WX 
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Discrete Wavelet 
Transform 
(DWT) (Percival 
& Walden, 2000) 
 
Maximal Overlap 
Discrete Wavelet 
(MODWT) 
(Percival & 
Walden, 2000) 
 
Multiresolution 
analysis (MRA)  
(Percival & 
Walden, 2000) 
 
DWT-MRA, 
MODWT-MRA 
 
 

 
Develop a wavelet correlation (WCORR) 
and wavelet cross-correlation (WCCORR) 
approach for assessing the validity of the 
deterministic dynamic models against the 
empirical agitation-sedation data of 37 ICU 
patients. 
 
Provide graphical assessment tools and 
wavelet based numerical metrics of 
comparability between the model and the 
data via the discrete wavelet transform 
(DWT), partial DWT (PDWT), maximal 
overlap DWT (MODWT) and via 
Multiresolution analysis (MRA). 
 
Investigate the lag/lead relationship 
between the simulated and recorded 
infusion series on a scale by scale basis via 
wavelet cross-correlation (WCCORR) 
methods. 
 
Develop performance measures as follows: 
 

1. Modulus of the wavelet 
correlation at wavelet scale 1,   

λ1. 
2. Count number (out of 8) of 

the number of non-significant 
wavelet correlations at scales 

λj (j=1,2,…,8). 
 

Test poor versus good fit or tracking 
groups via the: 

 

Kruskal Wallis test on the WCORR 
measures per patient and on the indicators 
in 1 and 2 above to test for group 
differences (for the poor versus good 
trackers group). 

 

The set of 15  poorκ trackers are: 
 
P2, P4, P7, P9, P10, P11, P21, P22, 
P27, P28, P29, P32, P33, P34, P35  
 
With a median modulus of wavelet 

correlation at wavelet scale λ1 of 
0.046, and 95% CI (0.017,0.093), 
significantly lower  than the good 
trackers  (P = 0.001 k-w test) and a 
median number of non-significant 

wavelet correlations at scales λj  of  
5.0 (2.37, 7.0). 
 
 
The set of remaining good trackers   
have: a significantly lower median 
number of non-significant wavelet 

correlations at scales λj  of  2.0, and 
95% CI (2.0, 4.0); a median of the 
modulus of wavelet correlation at 

wavelet scale λ1 of  0.159, and  95% 
CI (0.111, 0.232), significantly higher  
than the poor  trackers. 
 
κ  Poor trackers have  a count of non-
significant WCORR values ≥ 2 and a 

non-significant WCORR value at  λ1 
(level 1) or a “Count of NS” ≤  3 ; or 
have a significant negative WCORR 

value at scale λ1 and a significant 

negative WCORR value at λ6. Of 
these 15 poor performers, 11 are also 
considered to track poorly by either 
or both of the performance  
indicators of Rudge et al. (2006b) 
and of Chase et al. (2004).  
 

w
w

w
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4. Conclusion 

DWT and MODWT-MRA decomposition and reconstruction are shown to provide clear and 
consistent, in regard to good or poor performance, “signatures” of, and values for the 
wavelet correlations and cross-correlations (at all dyadic scales) between an ICU patient’s 
bivariate time series, namely their simulated and their recorded A-S infusion profiles over 
time under sedation. A suite of wavelet techniques are advocated, based on the DWT, and 
applied successfully to assess whether an ICU patient’s mathematically simulated agitation-
sedation (A-S) status reflects their true dynamic profile.   
The wavelet correlation profiles of the good trackers are shown to be invariably 
significant at all scales (except at 32 and 64). Patients who exhibit poor tracking exhibit 
WCORR profiles which are invariably non significant at almost all wavelet scales, 

particularly at 1. Moreover, cross-correlation (WCCORR) signatures also show a common 
pattern for the good trackers, which is distinctly different to the pattern associated with 
poor tracking. It is also shown that the lead or lag relationship between a patient’s 
simulated and recorded agitation-sedation infusion series can be investigated on a scale 
by scale basis via the implementation of the MODWT-MRA. The MRA is shown to 
successfully indicate local features of interest in the simulated and recorded series, with 
the smooth MRA series offering a good visual summary of the overall long-term trends in 
a patient’s A-S status.   
Fifteen poor trackers are identified by the DWT based diagnostics derived in this chapter. 

Specifically it is found that the modulus of WCORR at 1, |1|, is invariably higher (and 
significantly so) for the good compared to the poor trackers.  The profile of (“Count of 
NS”) across all patients is higher for the poor trackers; and the values of RAND, AND and 

|j | invariably higher for the good trackers. Specifically the median absolute value of the 

wavelet correlation at 1, and median value of AND, RAND and TI are highly 
significantly lower for the poor trackers (15 of 37 patients). The median of the number of 
non significant wavelet correlations (the “Count of NS” variable) is 5.0 for the poor 
trackers, significantly higher than the median of 2.0 for the good tracking group (P = 
0.001). It is noteworthy that 11 of the 15 DWT based poor trackers are also found to be 
poor trackers by either or both of Rudge et al.’s (2006b) and Chase et al.’s (2004) (non 
wavelet based) performance indicators, showing significant agreement between the 
wavelet DWT and the earlier kernel based methods - with a kappa test of agreement 
between the WCORR criterion for poor tracking and Chase et al (2004) of 0.2127 (P=0.01); 
and with Rudge et al. (2006b) of 0.5856 (P=0.001).   
Other recent work by Kang et al. (In Prep) has used Bayesian densities and wavelet 
shrinkage methods to create a novel wavelet probability band (WPB). A 90% value for the 
WPB implies that for at least 90% of the time, the estimated mean value of the patient’s 
recorded infusion rate lies within the band. A 90% WPB was constructed by Kang et al. (In 
Prep) for each of the 37 patient profiles, and the time and duration of any deviations from 
the wavelet probability band recorded for each patient. Likewise wavelet analogues of the 
AND and RAND diagnostics of Rudge et al. (2006a; 2006b), namely the average 
normalized wavelet density (ANWD) and the relative average normalized wavelet 
density (RANWD) have been derived by Kang et al. (In Prep); as has a Wavelet Time 
Coverage Index (WTCI) – all by using Bayesian wavelet thresholding. The resultant WTCI 
and 90% WPB provide very strong support for the DWT wavelet diagnostics derived in 
this chapter. Indeed of the  15 DWT based poor trackers identified in this chapter, 10  also 
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exhibit a low WPB (WPB 90% < 70%) and a low wavelet  density based RANWD measure 
(RANWD   0.5) and are likewise deemed to be poor trackers according to these recent 
wavelet  regression methods of  Kang  et al. (In Prep). Statistically speaking the wavelet 
probability band and wavelet density diagnostics mirror the poor versus good 
classification of this chapter’s WCORR DWT based diagnostics (kappa = 0.7701, P = 
0.0001). The main reason for the reduced total time within the WPB (and for the non 
significant WCORRs) for this minority group of 10 (or 15) poor trackers (of a total of 37 
patients), is the consistently poor performance of the DE model throughout their total 
length of the A-S simulation.  
The work in this chapter provides a suite of new wavelet based diagnostics by which to 
achieve statistical model validation of the A-S models. The DWT, wavelet correlation and 
cross-correlation measures derived in this chapter are proved to be valid for assessing 
control, and mirror earlier validation measures; as do the more recent wavelet regression 
diagnostics (namely WTCI, ANWD, RANWD, and WPB 90%) of Kang et al. (In Prep). 
Wavelets are shown to visually and quantitatively discriminate patients for whom the A-S 
model captures their fundamental A-S dynamics, versus those, for whom this is not so. 
Wavelet WCORR and WCCORR signatures thus form a possibly alternative and 
appropriate feedback mechanism for comparison of improved sedation administration 
controllers and gain. The wavelets based visual tools and quantitative measures thus 
contribute to the task of improving and of refining A-S models. This chapter thus 
demonstrates that wavelets provide a new diagnostic tool by which to assess the 
agitation-sedation of ICU patients, and show that it is possible to evaluate A-S models via 
wavelet diagnostics for accurate evaluation of A-S management, where the latter 
represents a trade-off between the benefits of low patient agitation versus the cost of high 
infusion rates and increased total dose requirements (Rudge et al., 2003; 2005; 2006a; 
2006b). Wavelets are thus suitable for clinical implementation in ICU agitation and 
sedation control.  
Overall the various wavelet diagnostics strongly agree and confirm the value of A-S 
modelling in ICU. Wavelet DWT analysis also demonstrates that the models of the A-S 
studies of Chase et al., (2004), Rudge et al., (2005; 2006a; 2000b) and of Lee et al., (2005), 
are suitable for developing more advanced optimal infusion controllers. These offer 
significant clinical potential of improved agitation management and reduced length of 
stay in critical care. The use of quantitative modelling to enhance understanding of the A-
S system and the provision of an A-S simulation platform are critical tools in this area of 
patient critical care.   
The DWT approach gives robust performance metrics of A-S control and also yields 
excellent visual assessment tools - generalisable to any study which investigates the  
similarity or closeness between any bivariate time series of, say, a large number of units 
(patients, households etc) and of disparate lengths and possibly of extremely long 
length.  
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